【摘要】本文详细说明了电动机启动时可能出现的故障现象,分析产生故障的原因,从而提出相应的解决方案。
【关键词】电机;电机起动;电机故障
目前各类港口的大型设备基本上全部以电能为动力来源,而电机则为电能转化为机械能的基本驱动装置。各种机电设备安装完毕,试运行时往往会碰到意想不到的异常现象,使电动机起动失败而跳闸,较大容量的电动机机会便多一些。为了便于事后分析,在电机起动之前,我们就应做好事前准备工作(尤其是大型电动机更需要重视),并对检查的结果加以分析。
以图1所示的典型电路,即其一次回路的短路保护是使用断路器QF(或熔断器),控制电器接触器K,热继电器FT作过载保护(有时FT接在电流互感器二次侧回路中)为例,来介绍电动机起动失败的异常现象,并分析其起动失败的原因及采取的对策。
1.电动机的控制与保护
1.1电动机一起动立即跳闸,即瞬动跳闸
1.1.1断路器QF瞬动跳闸
QF瞬动跳闸,会使人怀疑是否发生了短路故障,但凡发生短路故障均有迹象可查,或有火花。或有焦烟气味,同时兼有异常声音,事后再作绝缘试验,能发现绝缘已损坏。最迷惑不解的是一切都好,但断路器仍然发生瞬动跳闸,此时应确认断路器选择的脱扣电流值是否合理。如40KW的电动机,其额定电流约80A。在选择用断路器时,选用脱扣电流100A似乎可以了,而且瞬时电流倍数为10,可达1000A,足以躲开电动6 IN的起动电流,似乎不应该有问题。但如果考虑下列因素之后,原因便清楚了。
(1)断路器整定值,制造允许误差老产品为±20%、新产品为±10%,碰得不巧,所选用的断路器正好是—20%的误差,所以其实际瞬动脱扣电流值得注意 1000×(1-20%)=800(A)。
(2)电动机的起动电流6 IN通常指周期分量。在起始的2至3个周边中。非周期分量的作用很明显,两者叠加有时峰值可达到额定值的13倍。即40KW电动机的额定电流为80A,其起始(峰值)起动电流可达13×80=1040(A),超过了上述的800A。这个峰值出现在起始的1~2个周波,若用熔断器作短路保护是不会分断的,而断路器,特别是带限流特性的高分断能力的断路器,动作都是相当灵敏,会因此而跳闸。对策是提高断路器脱扣电流值。现在有一些型号的断路器,其整定值是可调的,当然更多的是固定不可调的,那只好更换断路器。
1.1.2熔断器的瞬时熔断与短延时分断
如果一次回路是用熔断器作保护电器,一般而言,凡是新设备且熔断器规格选择合理的,在故障时不会发生瞬时熔断的现象。但下列情况,应予以重视。熔断器熔断体严重受伤,但还维持着薄弱的电气导通性能,一旦起动电流通过时,该熔断体即熔断。如果正好是控制回路所接的一相,那么接触器线圈失电,即造成接触器失压跳闸,合闸失败。
有两种情况能使熔断器受伤:其一是机械外力作用,外壳破裂,导致熔断体受伤,此种情况是可观察到的:另一种是已在其它场合使用过的熔断器,曾发生过相间短路故障。如果熔断的一相不是控制回路的同相,接触器不会因此而失压跳闸,便表现为电动机缺相运行。此时电动机转矩不足,无法起动,表现堵转状态,电流值始终维持在6 IN左右。热保护因此而动作,接触器跳闸,起动失败。此时应更换全部熔断器(因为其它两相熔断器也因长时期6 IN工作电流而影响其特性),排除其它原因后再起动。当然在此过程中,必须注意电流表指示值,确保无其它异常情况。
1.1.3接触器K瞬动跳闸
K 起动时瞬动跳闸有两个原因:
(1)二次回路故障
如果从电压表上看,起动时电压没有太大的跌落,原因便在二次回路,可以从以下两个方面逐一检查。
一是二次回路熔断器FU熔断:一般情况下不管接触器的容量大小,选用额定电流2A的熔断体(熔芯)很多。对于小容量的接触器问题不大,当接触器容量达250A时,接触器线圈起动容量达1KVA以上(如B型接触器),如果使用~220V的线圈,其电流可达到4.5A,2A的熔断体便可能熔断,这就造成接触器线圈失电,合闸失败。此时信号灯均熄灭,很容易判断原因,只要将熔断器换成10A的即可。
二是合闸回路接触器K自保持触点故障: K的辅助触点一直用来作接触器合闸后的自保持,因它是常开的,接触不良在合闸前是不会发觉的,合闸后的自保持全靠该触点,接触不良就不能自保持,接触器线圈失电跳闸,合闸便失败。发现此种情况,应再按一次按钮,此时注意合闸时接触器辅助触点动作情况,再检查一下触头上无杂物污染。若有,应用砂纸将杂物、污染物擦去,再试合一下即可。
(2)一次母线电压过低
要保证接触器K可靠吸合,其线圈电压不得低于额定电压的85%。如果电动机比较大,供电线路离电源又较远,在起动时由于起动电流较大,线路压降就要大一些,很可能低于额定电压85%,接触器无法吸合,这从电压表上可以观察到。对策是在接触器所处的母线上设置补偿电容。因为电动机起动时70%是无功电流,设置电容补偿以减少流过供电线路的电流。补偿的电容量可按电动机额定容量的80%考虑。如仍不够,可增加电容量直至电动机能起动时为止。当然也可通过相关的计算来确定。
1.2降压起动失败跳闸
降压起动失败跳闸有两种情况。
1.2.1在未切至全电压时即跳闸
这种情况往往是电动机端电压不足造成的,此时从监测到电压情况便可判断。造成端电压过低的原因是:一方面可能是变电所至配电室供电线路过长,另一方面可能是降压电抗(或电阻)值偏大,致使电动机端电压过低,起动转矩不足以克服负荷转矩,电动机如堵转一般,电流始终不衰减,热保护到时动作跳闸,起动失败。
如果是供电线路过长可设法用电容补偿方法,提高配电室母线电压。当然电容器应是可调节的,以免电动机停机时母线电压过高。
如果是电抗过大,则设法减小电抗值,使得母线电压与电动机端电压均有妥当的数值,各方面工作都正常。
1.2.2降压过程是成功的,在投切至全电压运行时跳闸
在电动机从降压阶段至全电压工作的切换过程中,有一供电间隙(如Y—△起动),此时因电动机内有乘磁,它的电磁场的情况与停机是不同的,有自己的极性方向,类似发电机。当合至电网时由于相位不一致,有时会造成大的冲击,其电流甚至会超过全电压起动的情况,出现意料不到的断路器过流动作,或接触器失压跳闸。这种状况往往是有时起动能成功,有时起动要失败,有很大的偶然性。成功的原因是两个相位接近或完全相同,相位差就很小,二次起运冲击电流很小,起动便能成功。
这种情况,100kw以上的电动机发生的较多,因为其乘磁能量大。遇到这种情况应使用电抗器降压,用短接电抗来达到全电压起动目的。其过程中间没有供电间隙,就不会产生上述情况。
1.3短延时跳闸
电动机起动过程中,跳闸时间不足1s的为短延时跳闸。其异常现象不多见,上述熔断器不良是其中之一。另外,带有接地保护的断路器,其漏电动作整定值偏小,因电动机的馈赠电线路在敷设中绝缘受伤,漏电流值偏大,有时会导致接地保护动作。为防止误动作,接地保护通常有0.2~0.5s的短延时,此时,便反映为短延时动作跳闸。一般而言,通过绝缘检查是能发现此故障的。
此外,短延时跳闸原因是上一级保护误动作。如图2所示,QF1的整定值是正确的,而QF整定值比QF1大,但有Mn等电动机负荷的存在,当M1起动时,有6 IN起动电流存在,QF保护越级动作,此往往表现为短延时,同时Mn等电动机也从运行中跳闸,表象很清楚,很容易识别。对策是提高QF的整定值。
1.4长延时跳闸
跳闸动作时间在5s以上的为长延时跳闸。其原因多在电动机一端。
1.4.1电动机端电压不足
在一些码头、水源地等场所,由于种种原因,无法设置变电所。这些电动机离变电所配电室较远,电动机容量又较大,在起动时电动机控制中心的母线电压不是太低,接触器能可靠合闸。但电动机端电压不足,不能拖动相关的负载运转,相当于堵转状态,时间一长,热保护便动作跳闸。
长延时跳闸更容易发生在电动机容量大。供电线路长,双采取了降压起动的场合。有些制造商根据电动机容量较大的状况,出厂时配置了降压起动装置,使用者误以为降压起动设备有比无好,也就用上去了。其结果是电动机端电压更低,问题更突出。当电动机与其电动机控制中心相距较远,例如大于200m时,其线路本身也能限制起动电流值,那时就不一定需要降压起动了。当然这是要经过计算下结论的。
电动机端电压要保证多少数值才能确保负载的起动,理论上是可以通过计算求得的。如在初次起动时,就有可能起动失败。这时需要监测电动机端电压,当电动机端电压在60%及以下时,应采取措施。优先的办法是在电动机端并联电容,如前面所述的那样。但电容量不必太大,按电动机功率因数0.8为依据,补偿至0.95为宜,这也是供电设计规范中所推崇的就地补偿方式。这样不但改善了电动机端电压水平,而且也补偿了功率因数。如在选择电动机时不清楚起动电流倍数,就只能适当地放大一些导线截面,以减少线路的阻抗和电压降。
1.4.2电动机反转
有一些负载,正转与反转,起动转矩是不一样的。例如堆取料机悬皮,反转时尽管能起动成功,但负荷电流始终超过额定电流,热保护自然要动作。发生此情况,可检查一下转向是否正确,发生电流偏大,转向有误,只要将电动机馈线相位变一下,使电动机正向转动即可。
1.4.3机泵安装有误
例如翻车机房通风机泵,其叶轮角度是可调的。叶轮角度不同时,风机提供的风量是不同的,所需电动机功率也是不同的。原来需要的风量不大,而风机安装时叶轮角度调节成了大风量时的角度,与所提供的电动机不协调,便造成长时期过载而导致热保护动作,起动失败。
另外,还有一些属于电动机及其机泵联结上不妥的场合,也会造成上述情况,上述情况可请制造商来处理解决。
1.4.4热保护选用不正确
有一些负载,如大直径类型的,起动惯量大,必须的时间达10s或更长。普通的热继电器如是10A级的可确保在7.2IN、10s内不动作,超过10s便难以保证了。如果发生此种情况,可改用20级(动作时间20s)或30级(动作时间30s)。
2.电动机运行中的监视与维护
电动机在运行时,要通过听、看、闻等及时监视电动机,以期当电动机出现不正常现象时能及时切断电源,排除故障。具体项目如下:
2.1听电动机在运行时发出的声音是否正常
电动机正常运行时,发出的声音应该是平稳、轻快、均匀、有节奏的。如果出现尖叫、沉闷、摩擦、撞击、振动等异声时,应立即停机检查。观察电动机有无振动、噪声和异常气味 电动机若出现振动,会引起与之相连的负载部分不同心度增高,形成电动机负载增大,出现超负荷运行,就会烧毁电动机。因此,电动机在运行中,尤其是大功率电动机更要经常检查地脚螺栓、电动机端盖、轴承压盖等是否松动,接地装置是否可靠,发现问题及时解决。噪声和异味是电动机运转异常、随即出现严重故障的前兆,必须随时发现开查明原因而排除。
2.2通过多种渠道经常检查
检查电动机的温度及电动机的轴承、定子、外壳等部位的温度有无异常变化,尤其对无电压、电流指示及没有过载保护的电动机,对温升的监视更为重要。电动机轴承是否过热,缺油,若发现轴承附近的温升过高,就应立即停机检查。轴承的滚动体、滚道表面有无裂纹、划伤或损缺,轴承间隙是否过大晃动,内环在轴上有无转动等。出现上述任何一种现象,都必须更新轴承后方可再行作业。注意电动机在运行中是否发出焦臭味,如有,说明电动机温度过高,应立即停机检查原因。
2.3保持电动机的清洁,特别是接线端和绕组表面的清洁
不允许水滴、油污及杂物落到电动机上,更不能让杂物和水滴进入电动机内部。要定期检修电动机,清洁内部,更换润滑油等。电动机在运行中,进风口周围至少3米内不允许有尘土、水渍和其他杂物,以防止吸人电机内部,形成短路介质,或损坏导线绝缘层,造成匣间短路,电流增大,温度升高而烧毁电动机。所以,要保证电动机有足够的绝缘电阻,以及良好的通风冷却环境,才能使电动机在长时间运行中保持安全稳定的工作状态。
2.4要定期测量电动机的绝缘电阻
特别是电动机受潮时,如发现绝缘电阻过低,要及时进行干燥处理。
2.5保持电动机在额定电流下工作
电动机过载运行,主要原因是由于拖动的负荷过大,电压过低,或被带动的机械卡滞等造成的。若过载时间过长,电动机将从电网中吸收大量的有功功率,电流便急剧增大,温度也随之上升,在高温下电动机的绝缘便老化失效而烧毁。因此,电动机在运行中,要注意检查传动装置运转是否灵活、可靠;连轴器的同心度是否标准;齿轮传动的灵活性等,若发现有滞卡现象,应立即停机查明原因排除故障后再运行。
3.结束语
随着电动机及控制设备的不断发展,电动机及控制设备的技术性能也日益完善。电动机的保护往往与控制设备及其控制方式有一定关系,即保护中有控制,控制中有保护。如电动机直接起动时,往往产生4—7倍额定电流的起动电流。若由接触器或断路器来控制,则电器的触头应能承受起动电流的接通和分断考核,即使是可频繁操作的接触器也会引起触头磨损加剧,以致损坏电器;对塑壳式断路器,即使是不频繁操作,也很难达到要求。因此,使用中往往与起动器串联在主回路中一起使用,此时由起动器中的接触器来承载接通起动电流的考核,而其他电器只承载通常运转中出现的电动机过载电流分断的考核,至于保护功能,由配套的保护装置来完成。
此外,对电动机的控制还可以采用无触点方式,即采用软起动控制系统。电动机主回路由晶闸管来接通和分断。有的为了避免在这些元件上的持续损耗,正常运行中采用真空接触器承载主回路(并联在晶闸管上)负载。这种控制有程控或非程控;近控或远控;慢速起动或快速起动等多种方式。另外,依赖电子线路,很容易做到如电子式继电器那样的各种保护功能。但不管采用何种保护装置,必须考虑过载保护装置与电动机、过载保护装置与短路保护装置的协调配合。还需要我们在实际工作中不断积累经验,判断电动机及控制设备存在的问题与故障处理,找出故障原因并加以分析,及时采取对策,以保证电动机及传动设备的正常运行。